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ABSTRACT Several factors have been identified to cause peripheral fatigue during exercise, whereas the
mechanisms behind central fatigue are less well known. Changes in the brain 5-hydroxytryptamine (5-HT) level is
one factor that has been suggested to cause fatigue. The rate-limiting step in the synthesis of 5-HT is the transport of
tryptophan across the blood–brain barrier. This transport is influenced by the fraction of tryptophan available for
transport into the brain and the concentration of the other large neutral amino acids, including the BCAAs (leucine,
isoleucine, and valine), which are transported via the same carrier system. Studies in human subjects have shown
that the plasma ratio of free tryptophan (unbound to albumin)/BCAAs increases and that tryptophan is taken up by the
brain during endurance exercise, suggesting that this may increase the synthesis of 5-HT in the brain. Ingestion of
BCAAs increases their concentration in plasma. This may reduce the uptake of tryptophan by the brain and also 5-HT
synthesis and thereby delay fatigue. Accordingly, when BCAAs were supplied to human subjects during
a standardized cycle ergometer exercise their ratings of perceived exertion and mental fatigue were reduced, and,
during a competitive 30-km cross-country race, their performance on different cognitive tests was improved after the
race. In some situations the intake of BCAAs also improves physical performance. The results also suggest that in-
gestion of carbohydrates during exercise delays a possible effect of BCAAs on fatigue since the brain’s uptake of
tryptophan is reduced. J. Nutr. 136: 544S–547S, 2006.
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Fatigue during physical exercise may be related to both cen-
tral and peripheral factors that are influenced by the intensity
and duration of the exercise, the nutritional intake, and the
training status of the individual. A large number of studies have
been published on peripheral fatigue and several biochemical
alterations were identified as causes of fatigue, for example,
depletion of muscle glycogen or phosphocreatine, accumulation
of protons, and failure of neuromuscular transmission (1),
whereas the neurobiological factors underlying central fatigue
are less well known (2). During prolonged exercise of moderate
intensity, a decrease in the blood glucose level due to depletion
of the liver glycogen stores is one factor known to affect the

central nervous system and cause fatigue (3–5). Another factor
suggested to cause central fatigue during dynamic exercise is an
increase in neurotransmitter release, particularly 5-hydroxy-
tryptamine (5-HT)5 in the brain (6,7). Changes in the brain
5-HT level are involved in the control of arousal, sleepiness,
and mood (8) and might therefore also play a role in fatigue
during and after physical exercise.

The first reaction in the synthesis of 5-HT is catalyzed by the
enzyme tryptophan hydroxylase and, because this enzyme is not
saturated with substrate, the rate of 5-HT synthesis is sensitive
to changes in blood tryptophan concentration and the trans-
port of tryptophan across the blood–brain barrier (8,9). This
transport is influenced by the capacity of the blood–brain bar-
rier transporter, the plasma concentration of tryptophan, the
fraction of tryptophan available for transport into the brain,
and the concentration of the other large neutral amino acids
(LNAAs, including the BCAAs leucine, isoleucine, and valine),
which are transported via the same carrier system (10–12).
Tryptophan is the only amino acid that binds to albumin in the
plasma and ;10% of the total plasma tryptophan is in the free
form; thus 90% is transported bound to albumin (13).

During sustained exercise BCAAs are taken up by the mus-
cle and the plasma concentration decreases. In addition, when
exercise elevates the plasma level of free fatty acids it also
increases the plasma level of free tryptophan because free fatty
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acids and tryptophan compete for the same binding sites to albu-
min (13). An increase in the plasma ratio of free tryptophan/
BCAAs will thus favor the transport of tryptophan into the
brain and also the synthesis, concentration, and release of 5-HT
from some neurons, which could be responsible for fatigue
during and after sustained exercise.

Brain exchange of tryptophan

In two separate studies, an uptake of tryptophan by the
brain, evaluated from arterio-jugular venous concentration dif-
ferences, was found during sustained exercise (14,15). Already
after 30 min exercise an uptake was found that continued to
increase during the remainder of the 2.5 h of exercise (15).
Results from animal experiments indicate that enhanced entry
of tryptophan leads to increased 5-HT levels in specific areas of
the rat brain and in the cerebrospinal fluid of rats running on
a treadmill (16–18). If this is also the case in humans, the obser-
ved uptake of tryptophan by the brain during exercise should
increase the rate of 5-HT synthesis and release.

Ingestion of carbohydrates prevented the brain uptake of
tryptophan during exercise. The arterial plasma concentration
of free tryptophan increased to a larger extent during exercise
when only water as compared with carbohydrates was ingested,
thus supporting the notion that free tryptophan, rather than
the total arterial concentration, is important for tryptophan
transport into the brain. However, no correlation between
plasma free tryptophan or the ratio of free tryptophan/BCAAs
in the arterial blood and the cerebral uptake of tryptophan was
found (15). In contrast, studies of exercising animals have
shown a nearly proportionate rise in the plasma concentration
of free tryptophan and an increase in the tryptophan
concentration in the brain, whereas no such relation was
found for the total concentration of tryptophan (19,20).

The effect of BCAA intake on tryptophan uptake by the
human brain during exercise is not known. However, infusion
of BCAAs in patients with hepatic cirrhosis blocked the ab-
normal uptake of tyrosine by the brain (21). Furthermore, ad-
ministering valine to rats prevented the exercise-induced 5-HT
release in the ventral hippocampus during and after exercise
(22). Both studies indicate that elevating the plasma concen-
tration of BCAAs (or valine) decreases the transport of the
aromatic amino acids, tyrosine and tryptophan, into the brain as
can be predicted from our knowledge of transport competition
through the blood–brain barrier (23).

5-HT and fatigue

The first study to show that 5-HT is influenced by physical
exercise was published in 1963 by Barchas and Freedman (24),
who found an increased concentration of 5-HT in the brain
after rats had swum to exhaustion. Several studies have con-
firmed these early results and have also shown that sustained
exercise causes an increase in the turnover of 5-HT in some
parts of the brain in experimental animals (17,18). An in-
creased release of 5-HT, measured with the microdialysis tech-
nique, in the hippocampus and frontal cortex during and after
exercise has also been reported (25–28). Hence, there is evi-
dence that the synthesis and release of 5-HT in the brain incre-
ases in response to exercise; however, whether this also leads to
fatigue is still debated.

Support for the involvement of 5-HT in central fatigue is
presented in studies of experimental animals where the brain 5-
HT level has been altered by means of pharmacological manip-
ulation. Administering a general 5-HT agonist to rats impairs
their running performance in a dose-related manner (29,30)

and the impairment is not attenuated by administering a
peripheral 5-HT antagonist (30). Furthermore, administering
a 5-HT antagonist improved running performance (30). Studies
in human subjects provide conflicting results: some studies sup-
port the involvement of 5-HT in fatigue (31,32), whereas others
report no involvement of 5-HT in fatigue (33,34). Differences in
drugs and doses, time of administering the dose, or individual
variation in neuroendocrine response, as well as differences in
the type, intensity, and duration of the exercise, might explain
divergent results.

Exercise has also been reported to increase the synthesis and
metabolism of dopamine and norepinephrine (NE) in whole
brain extracts or in specific parts of the brain. Chaouloff et al.
(35) suggest that an increased concentration of dopamine in
some parts of the brain could inhibit the synthesis of 5-HT
during exercise and thereby delay fatigue.

Amino acids and fatigue

The possibility that the nutritional supply could influence
brain tryptophan and 5-HT metabolism and thus delay fatigue
has attracted a great deal of interest during the past 10–15
years, and several studies on this topic have been published.

Intake of BCAAs. Ingestion of BCAAs will increase their
plasma concentration and balance the increase in free tryp-
tophan. This will, according to the theory presented in the
beginning of this article, decrease the transport of tryptophan
into the brain, decrease 5-HT synthesis, and delay fatigue.
When human subjects are supplied with a mixture of BCAAs
during sustained exercise, their ratings of perceived exertion
and mental fatigue were decreased (36). Physical performance
in a warm environment, evaluated as time to exhaustion, im-
proved from 137 to 153 min in one study (37), but it was not
affected by BCAA ingestion in another (38). The findings of
Mittleman et al. (37) raised the possibility that central fatigue
was more pronounced during exercise in heat than at normal
temperatures. Support for this is presented by Pitsiladis et al.
(39) who observed higher serum prolactin levels (indicator of
central 5-HT activation) during exercise in the heat (308C)
than during exercise at 108C. In contrast, administering parox-
etine, a 5-HT reuptake inhibitor, to human subjects during
exercise in the heat did not influence performance and en-
docrine response (34). In line with the latter results is the
finding that, during exercise in the heat, there was no uptake of
tryptophan by the brain, which suggests no increase in 5-HT
synthesis and release (14).

In most studies, BCAAs have been given together with
carbohydrates during different types of sustained exercise. The
results indicate an improvement in mental agility evaluated as
performance on various psychological tests after sustained com-
petitive exercise (40), but not after standardized laboratory
exercise when subjects were supplied with BCAAs and car-
bohydrates (41). Similar results have been found concerning
physical performance: during standardized laboratory exercise
no additional benefit to physical performance was found when
BCAAs were added to a carbohydrate solution (41–43), but,
when BCAAs were given to subjects during a marathon race,
an improvement in running performance was found in a sub-
group of slower runners (44).

In this context, it is important to consider that the intake of
carbohydrates during exercise depresses the exercise-induced
increase of the plasma free fatty acids and free tryptophan
levels, as well as the uptake of tryptophan by the brain (15,45),
and may therefore delay a possible effect of the BCAAs on
fatigue. This might explain why an effect of BCAAs on physical
performance can be found during prolonged exercise, like a
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marathon race, but not during laboratory experiments of
shorter duration or lower intensity. For example, Struder et al.
(46) showed that the changes in the plasma ratio of free
tryptophan/BCAAs during 5 h of exercise depends on the
intensity of exercise; an increase in this ratio was found during
the last hours of exercise at 75% of maximal oxygen uptake,
whereas no significant change was found during exercise at 50%
of maximal oxygen uptake.

Intake or administration of tryptophan. Another pre-
diction of the theory is that the intake of tryptophan and
elevation of the free tryptophan level would hasten fatigue.
Increasing the blood tryptophan (free and total) concentration
by administering tryptophan to rats and horses led to a reduc-
tion in performance, thus supporting the involvement of
tryptophan and 5-HT in fatigue (47,48). However, when
tryptophan is given to human subjects, divergent results were
reported because of different experimental protocols, nutritional
supplements, and a wide variation in exercise times (49–51).

BCAAs and plasma ammonia

Based on the observation that an intake of BCAAs has
a detrimental effect on the physical performance of patients
with glycogen phosphorylase deficiency due to increased
production of ammonia, it has been suggested that this would
also be the case with healthy individuals in a glycogen-depleted
state (52). When BCAAs were administered to subjects before
or during exercise, elevated levels of plasma ammonia were
reported in some studies (38,50,52–54) but not in others
(36,37,55). It is likely that the discrepancies can be explained
by the different amounts of BCAAs ingested: large amounts
(20–30 g) seem to cause increased ammonia production,
whereas smaller amounts (7–10 g, 100 mg/kg body weight),
given in portions during exercise and recovery, cause no increase
in the release of ammonia from muscles (56). This amount of
BCAA produces an increase of their concentration in plasma
that is sufficient to balance the increase in free tryptophan
concentration during and after exercise (36), and there is no
reason to believe that this will cause an earlier fatigue due to
elevated levels of ammonia in the blood.

Endurance training and 5-HT receptor sensitivity

Endurance exercise is known to improve circulatory param-
eters such as as cardiac output and maximal oxygen uptake, but
it is also known to increase the oxidative capacity of the mus-
cles (1). These are changes that contribute to improving phys-
ical performance and delaying peripheral fatigue. In contrast,
very little is known about the effect of endurance training on
the synthesis and metabolism of neurotransmitters, for in-
stance, 5-HT. Such adaptations may contribute to the delay of
central fatigue during sustained exercise.

Endurance training may increase the turnover of 5-HT in
the brain, that is, training may increase the activity of brain
monoamine oxidase, the enzyme that catalyzes the first reac-
tion in the degradation of 5-HT. This could prevent any
marked increase in the concentration of 5-HT in the brain
during sustained exercise, which may delay the onset of fatigue
in trained individuals as compared with untrained ones. Such
measurements have been carried out in experimental animals,
but no change in monoamine oxidase activity after 11 wk of
endurance training was detected (17).

Endurance training may also cause a reduction in brain
5-HT receptor sensitivity, which may contribute to increased
exercise tolerance in well-trained athletes. Measurements of
prolactin release following a challenge with a 5-HT agonist can

provide an index of 5-HT receptor sensitivity. Using this
methodology, a few studies have been conducted in humans
and different results have been reported. Jakeman et al. (57)
presented data in support of a decreased 5-HT sensitivity in
endurance-trained individuals as compared with sedentary
individuals after a challenge with buspiron (a 5-HT1A receptor
agonist). Strachan and Maughan (58) were not able to detect a
difference in hormone release between trained and untrained
subjects after they were given fenfluramine, a 5-HT releasing
and reuptake inhibiting agent. Furthermore, 9 wk of endurance
training were not enough to produce a change in 5-HT receptor
sensitivity in young males, measured as the neuroendocrine
response following the administering of buspiron (59). However,
changes in receptor sensitivity may require long periods of
training, as opposed to the relatively rapid changes in maximal
oxygen uptake and muscle oxidative capacity. In addition, the
evaluation of receptor sensitivity is complicated by the large
number of subtypes of 5-HT receptors in the brain.

Conclusion

Sustained exercise leads to increases in the plasma-
concentration ratio of free tryptophan/BCAAs, an uptake of
tryptophan by the brain in humans, and an increase in the
synthesis and release of 5-HT in the rat brain. Elevated levels of
brain 5-HT may contribute to the development of central
fatigue during and after sustained exercise. Intake of BCAAs
increases their concentration in plasma and prevents the
increase in free tryptophan/BCAAs, which according to the
hypothesis should decrease the synthesis of 5-HT in the brain
and delay central fatigue. Support for this is presented in some
studies, where intake of BCAAs was reported to decrease
mental fatigue and improve mental agility as well as improve
physical performance. Other studies, however, did not detect
any effect of BCAAs on these variables. The effects of
endurance training on amino acid transport into the brain, 5-
HT synthesis and metabolism, and the possible role of nutrition
as it relates to central fatigue and different types of exercise, are
intriguing areas for future research.
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